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ABSTRACT: A new computational strategy is reported that
provides a fast approximation of numerical solutions of
differential equations in general. The method is demonstrated
with the analysis of NMR adiabatic relaxation dispersion
experiments to reveal biomolecular dynamics. When an
analytical solution to the theoretical equations describing a
physical process is not available, the new approach can
significantly accelerate the computational speed of the
conventional numerical integration up to 105 times. NMR
adiabatic relaxation dispersion experiments enhanced with
optimized proton-decoupled pulse sequences, although extremely powerful, have previously been refractory to quantitative
analysis. Both simulations and experimental validation demonstrate detectable “slow” (microsecond to millisecond)
conformational exchange rates from 102 to 105 s−1. This greatly expanded time-scale range enables the characterization of a
wide array of conformational fluctuations for individual residues, which correlate with biomolecular function and were previously
inaccessible. Moreover, the new computational method can be potentially generalized for analysis of new types of relaxation
dispersion experiments to characterize the various dynamics of biomolecular systems.

■ INTRODUCTION
Macromolecules in solution intrinsically undergo conforma-
tional dynamics representing interconversions between ther-
modynamically linked states on the energy landscape. Such
protein dynamics have been shown to play crucial roles in
various protein functions, such as ligand binding, catalysis, and
allostery.1−3 A recent study4 illustrated how internal motions
are critical to ligand-induced opening and functional dimeriza-
tion in cIAP1. In some cases, entropically driven conforma-
tional dynamics can directly regulate protein function. For
example, a mutation affecting only the conformational
dynamics in dihydrofolate reductase (DHFR) can “knock
out” enzyme activity.5 Similarly, the biological function of the
catabolite activator protein (CAP) is primarily driven by
conformational dynamics even when a mutant form of the
protein adopts an inactive conformation.6 Furthermore, the
low-population (higher-energy) conformation may be the
functional conformation, and the dynamic exchange between
the two conformations is essential to biological function.7 This
situation is likely to occur more frequently in biology than is
generally appreciated, where it can become a form of triggerable
regulation. Thus, it becomes increasingly important to
understand the roles of conformational dynamics and
interconversion rates associated with protein functions.
NMR spectroscopy is one of the few biophysical techniques

that can characterize the conformational dynamics of
biomolecules in aqueous solution at atomic resolution.8

Hence, it provides a link to map dynamical information onto
the burgeoning structural information to form a more complete
picture of biological function and identify hot spots with the
potential for novel therapeutic interventions. Biological
function and allostery occur across the microsecond to
millisecond time scale, and NMR relaxation dispersion
experiments have the ability to interrogate these processes
(slow dynamics). For example, conventional rotating-frame
relaxation (R1ρ) experiments are used to probe conformational
exchange on the microsecond time scale (103−104 s−1),9 while
Carr−Purcell−Meiboom−Gill (CPMG) experiments are sensi-
tive to conformational exchange on the millisecond time scale
(102−103 s−1).10 In order to quantitatively extract dynamic
parameters from these experimental data, several approximate
analytic solutions have been derived for different types of
relaxation dispersion experiments using sophisticated specific
analytic approaches.11−14 However, analytical solutions may not
be available (or feasible) for newer, more complex experiments.
Here we introduce a new computational approach, a geometric
approximation method, as a general tool to provide solutions
for relaxation dispersion experiments. It is subsequently applied
to a sophisticated variant of the traditional R1ρ and CPMG
experiments, Heteronuclear Adiabatic Relaxation Dispersion
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(HARD),15 which yields rich information on conformational
dynamics across an extremely wide range of time scales.
Classical Model. The classical model for exchange between

two sites,16 expressed by the Bloch−McConnell equation, has

been used for many decades to describe the evolution of the
bulk magnetization of a nuclear spin ensemble under chemical
exchange in NMR spectroscopy. The Bloch−McConnell
equation assuming a two-site exchange model is given by eq 1:
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The forward and reverse reaction rates (ka and kb), the
resonance offsets of states A and B with respect to the
radiofrequency (RF) pulse (δa and δb), the amplitude of the RF
pulse (ω1), and the longitudinal and transverse relaxation rates
(R1 and R2) enable a complete description of the system. In
principle, analysis of relaxation behavior in the context of this
mathematical formalism would permit extraction of the
exchange/reaction rates, chemical shifts/offsets, and popula-
tions either by numerical integration or via derivation of
analytical solutions of the equation as a function of these
variables (the conventional approach). However, numerical
integration is extremely inefficient (vide infra) and approximate
analytic solutions are available only for CPMG and R1ρ
experiments.11−14 Each approximate analytic solution was
derived using a complicated and widely different approach for
each experimental scheme. For example, the general solution
for the CPMG experiment was derived by treating the recursion
relations as coupled difference equations,12 while the solution
for the R1ρ experiment was derived by approximating the largest
eigenvalue of the evolution matrix of the average density
operator.14 Consideration of other relaxation experiments
requires either derivation of new analytical solutions or an
alternative approach.
Adiabatic R1ρ and R2ρ experiments measure longitudinal and

transverse relaxation in an effective field by replacing
conventional continuous-wave (CW) pulses with different (a
series of) adiabatic pulses (herein we utilize hyperbolic secant
(HS)-based pulses, denoted as HSn).15,17 These experiments
exhibit distinct relaxation dispersion profiles (Rex) as a function
of the exchange rate (kex) for microsecond to millisecond
dynamics.18 The combination of adiabatic R1ρ and R2ρ has been
shown to have many advantages over the conventional R1ρ and
CPMG experiments.15 However, several stringent assumptions
have to date limited its application to a few special biological
samples:15,18 (i) the dynamics must be in the NMR-defined
fast-exchange regime (where the exchange rate is much larger
than the difference between the chemical shifts of the two
states: kex ≫ Δω); (ii) a reference residue with no
conformational exchange and the same intrinsic autorelaxation
rates is required for data analysis; and (iii) the cross-correlation
relaxation channels19,20 are assumed to have no effect on the
15N relaxation rates during the adiabatic spin-lock periods.
Assumptions (i) and (ii) result from the lack of general
solutions to the equations describing the adiabatic relaxation

rates, and assumption (iii) addresses the need for an optimized
proton-decoupling scheme. Herein we demonstrate that the
combination of adiabatic R1ρ, adiabatic R2ρ, and R1 experiments
can be interpreted by means of a novel geometric
approximation method to yield accurate dynamic parameters
(overcoming (i) and (ii)) and that effective proton-decoupling
can be achieved (overcoming (iii)), providing a powerful set of
tools to probe spin dynamics across a wide range of time scales.

■ MATERIALS AND METHODS
NMR Experiments. All of the experimental tests were performed

with 15N,2H-labeled biological samples using Bruker Avance
spectrometers equipped with a helium-temperature TCI cryoprobe
at 800 MHz and a nitrogen-temperature TCI Prodigy probe at 600
MHz. The composite adiabatic pulses were 16 ms long (comprising
four 4 ms hyperbolic secants; HS1, HS2, HS4, HS6, HS8) and have
been described previously.15,18 Experiments were performed with a 1
mM sample of the mutant ubiquitin Ub1421 in 50 mM Tris buffer (pH
7.2) containing 10% D2O. Further experiments were performed with
0.5 mM samples of the ubiquitin-conjugating enzymes UbcH5b22 (17
kDa, τc = 11 ns at 15 °C) and Ube2g223 (18 kDa, τc = 13 ns at 15 °C)
in 50 mM Tris buffer (pH 7.2) containing 2 mM DTT and 10% D2O.

In the case of Ub14, all of the experiments were carried out with a 3
s recycle delay, four or eight scans, 256 complex points in the 15N
dimension, and 2048 complex points in the 1H dimension for adiabatic
R1ρ or R2ρ experiments, respectively. Data were processed in
NMRpipe24a using 64 points of linear prediction in the indirect
dimension and subsequently analyzed using Sparky.24b The total
relaxation delays were 0, 16, 32, 48, and 64 ms (N = 0, 1, 2, 3, and 4)
for both the adiabatic R1ρ and R2ρ experiments, and the 1H π-pulse
decoupling utilized γB1 = 22 kHz. The adiabatic R1ρ and R2ρ rates were
determined by fitting the data points with monoexponential decays,
and only the initial decays were used for data fitting. The R1
experiments were acquired and the data processed in the same way
as in the adiabatic experiments. The relaxation delays for the R1
experiments were 0.01, 0.05, 0.1, 0.2, 0.4, and 0.5 s.

In the case of the ubiquitin-conjugating enzymes (UbcH5b and
Ube2g2), the experiments were carried out with a 3 s recycle delay,
eight or 16 scans, 200 complex points in the 15N dimension, and 2048
complex points in the 1H dimension for adiabatic R1ρ or R2ρ
experiments, respectively. Data were processed without linear
prediction in NMRpipe and subsequently analyzed using Sparky.
The total relaxation delays were 0, 16, 32, and 48 ms (N = 0, 1, 2, and
3) for the adiabatic R1ρ experiments and 0, 16, and 32 ms (N = 0, 1,
and 2) for the adiabatic R2ρ experiments, and the 1H π-pulse
decoupling utilized γB1 = 22 kHz. The R1 experiments were acquired
and the data processed in the same way as in the adiabatic
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experiments. The relaxation delays for the R1 experiments were 0.01,
0.05, 0.2, 0.4, 0.6, and 0.8 s.
Geometric Approximation. On the basis of the following

theorem, the solution surface of any type (or any form) of differential
equations can be built from a library of solution points as long as the
solution is continuous and can be computed numerically.
Mathematically, it can be readily proven that any real continuous

function for which the defined domain is closed and bounded (a
compact subset) in Euclidean space can be uniformly approximated by
a finite number of polynomial functions defined in the uniform grid
with any given maximal order or with any given grid spacing. (This
theorem can be derived from basic concepts in topology, the unique
uniform structures of compact sets, and the polynomial approx-
imation.25)
In order to demonstrate this principle, the first step is to generate

libraries of solution points as cornerstones on which to build the
solution surfaces. In this work, 10 different libraries were computed
(comprising R1ρ and R2ρ experiments, each using five different
adiabatic pulses); each library is six-dimensional, based on the
independent parameters. The computation of the library is rather
time-consuming but must be done only once using a multiprocessor
cluster. The library then serves as a basis set for analyzing the
relaxation behavior of any molecule within the boundaries of the
library. In order to shrink the size of the library, we assume that the
adiabatic R1ρ and R2ρ rates are linear functions with respect to the
intrinsic R1 and R2 autorelaxation rates, as shown in eq 2:
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where Rxρ is either the R1ρ or R2ρ relaxation rate for a given adiabatic
pulse (HSn), R1 and R2 are the intrinsic autorelaxation rates, f(...) and
g(...) are the slopes of Rxρ with respect to R1 and R2, respectively, for
given dynamic parameters (offset, kex, Δω, pa), and h(...) is the
relaxation rate due to chemical exchange (the so-called Rex). Each six-
dimensional solution surface is then decomposed into three four-
dimensional surfaces ( f(...), g(...), and h(...)). The grid spacing can be
first estimated by analyzing a one-dimensional projection with respect
to a given parameter. The final grid spacing can be fine-tuned by
constructing and analyzing the lower-dimensional solution surfaces or
the partial solution surfaces to ensure that all of the features are
accurately represented. The calculated library is saved in a separate file
for future data analyses.
The second step is to approximate intermediate points on the

solution surfaces on the basis of the finite solution points in the library.
(This step is performed only when the search algorithm is analyzing
data with a given library.) The strategy is to estimate the adiabatic R1ρ
or R2ρ relaxation rate for given dynamic parameters on the basis of the
nearby solution points in the library using the polynomial
approximation. The coefficients in the polynomial functions are first
determined using the nearby solution points in the library, and then
the approximated relaxation rates can be calculated using these locally
defined polynomial functions. This is demonstrated in eqs 3 for the
two-dimensional case with the second-order polynomial approxima-
tion:

= + + + + +

= · + − −

= · − −

= · + − −

= · − −

= − − +

=

R x y ax bx cy dy exy f

a R R R

b R R

c R R R

d R R

e R R R R

f R

( , )

0.5 [ (1, 0) ( 1, 0)] (0, 0)

0.5 [ (1, 0) ( 1, 0)]

0.5 [ (0, 1) (0, 1)] (0, 0)

0.5 [ (0, 1) (0, 1)]

(1, 1) (1, 0) (0, 1) (0, 0)

(0, 0)

2 2

(3)

In this two-dimensional example, with the assumption that the domain
values in the library closest to the given dynamic parameters (x, y) are

at the origin (0, 0), the coefficients a, b, c, d, e, and f can be determined
from all of the nearby solution points, where “1” means increasing one
unit in a given dimension and “−1” means decreasing one unit in a
given dimension. The relaxation rate R(x, y) can then be calculated
using this locally defined second-order polynomial function. The same
idea can be applied to higher-dimensional solution surfaces.

The detailed implementation of the geometric approximation is
shown in the Supporting Information.

■ RESULTS

In order to utilize the rich information hidden in the adiabatic
R1ρ and R2ρ experiments, analytic solutions for the relaxation
rates during the adiabatic spin-lock pulses, which can be
described by the time-dependent Bloch−McConnell equation,
would be required. Previously, the approximate solution for the
adiabatic R1ρ experiment had been proposed as the time average
of the Trott−Palmer equation14,26 (the approximate solution
for the R1ρ experiment). However, no approximate solution for
the adiabatic R2ρ experiment has been derived for all exchange
time regimes. In the context of developing our numerical
analysis, we found that there are two separate effects of
adiabatic pulses on the relaxation dispersion profile of the
adiabatic R2ρ experiment and that both effects need to be
considered in deriving any approximate analytic solution. One
effect is caused by the time-average spin-lock field, and the
other is generated by the frequency of the refocusing adiabatic
pulses (Figure S1). It is a daunting task to develop an analytic
tool to provide a solution by characterizing these two effects at
the same time.
Instead of developing a specific mathematical tool for a given

experiment, we demonstrate a powerful and general approach
using a geometric approximation method to provide solutions
for relaxation of the bulk magnetization, which can be utilized
to analyze both conventional experiments and the sophisticated
adiabatic spin-lock periods. This method begins with the
construction of solution surfaces defined on closed and
bounded domains in Euclidean space on the basis of a library
of solution points. Topologically, the continuous surfaces can
be interpolated between the finite solution points in the library
with polynomial functions (see Materials and Methods and the
Supporting Information). The library represents six-dimen-
sional computation of the relaxation behavior according to the
Bloch−McConnell equation as a function of variables defining
the dynamics in the system. The computation is performed
with a moderate to coarse grid that depends on the smoothness
of the surfaces and the given maximal order of the polynomial
approximation. The resulting solution surfaces for the decay of
the total magnetization (A + B) exhibit high accuracy, with an
average deviation of less than 0.1% from the results of
conventional numerical integration (Table 1). Combining the
solution surfaces with Monte Carlo sampling27 to search for
solutions that match the experimental relaxation behavior
(Figure 1) makes it possible to extract information on spin
dynamics across a wide range of long (microsecond to
millisecond) time scales in the absence of H−X coupling (see
the Supporting Information). In simulated tests, the algorithm
provided accurate dynamic parameters (kex, Δω, and pa) when
no error was present (Figure 2). In the presence of up to 5%
random errors, the extracted kex values were more resistant to
errors than the other extracted dynamic parameters (Δω and
pa) (Figure 3). Moreover, the more precise the fit to the kex
values (i.e., the smaller the standard deviation), the more
accurate the fit results are (i.e., the better the coefficient of
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determination is) (Figure 3a,d,g). In practice, the use of the
geometric approximation method in analyzing relaxation data
can be up to 300 000-fold faster than the use of conventional
numerical integration (see the Supporting Information). The
speed increase does not consider the time spent in constructing
solution surfaces based on the libraries, but this approach does
circumvent the task of finding analytic solutions for a
potentially unsolvable problem. Comparison of previous studies
using the time average of the Trott−Palmer equation14,26 to the

geometric approximation showed that the analytic procedure
yields a less accurate solution for the adiabatic R1ρ experiment
(Table 1) and that its performance in computational speed for
analysis is 3 orders of magnitude less than that of our new
approach. The new approach enables complete data analysis
(adiabatic R1ρ and adiabatic R2ρ) without the need for
supercomputing systems to repeatedly perform numerical
integration and enables the practical examination of a wide
range of microsecond to millisecond dynamics for many
biological systems. Additionally, the wide range of dynamic
time scales cannot be detected by the well-known CPMG
experiments under the same conditions that are amenable for
the HARD experiments (Figures 2, 3, and S2).28

The validity of the Bloch−McConnell equation in describing
the evolution of the bulk magnetization depends on two
assumptions: (1) the system is in the limit of weak RF field and
(2) the system is an isolated single-spin system. The first
assumption is automatically satisfied in solution-state NMR
spectroscopy because of the fast tumbling of the molecules in
solution, according to Abragam’s theory.29 However, for the
general application to two-spin systems (e.g., 15N−1HN), the
second assumption holds only under the application of
complete proton decoupling. The original HARD experiment
did not include proton decoupling, and the analysis relied on
normalizing the complex relaxation behavior utilizing a
reference amino acid residue within the molecular system,
which complicated a generalized data analysis.15,18 To
determine the most efficient proton-decoupling scheme, we
examined both simulated and experimental effects of proton
coupling. We utilized an expanded density matrix (32 × 32)

Table 1. Deviation of the Approximate Solution Surfaces and
the Approximate Analytic Solution from the Numerical
Solutionsa

time average of the Trott−
Palmer equation geometric approximation

adiabatic R1ρ adiabatic R1ρ adiabatic R2ρ
b

average error 0.9% 0.05% 0.06%
standard
deviation

0.6% 0.04% 0.1%

largest error 12.4% 0.6% 3.2%
aThe library for each solution surface is composed of 4 million
solution points with an offset range of (−10 to 10) × 103 s−1, a Δω
range of (−8 to 8) × 103 s−1, a kex range of (0.1 to 1000) × 103 s−1,
and a pa range of 55% to 100%. To compare the approximate solutions
with the numerical ones, 10 000 random points were chosen. Errors
are expressed as percentages of the deviations from the numerical
solutions. bOnly experimentally accessible relaxation rates for adiabatic
R2ρ (<500 s−1) were used for statistical analysis, and there is no
approximate analytic solution for adiabatic R2ρ that can be defined in
all exchange regimes for the comparison.

Figure 1. Experimental data points (left) are used to match solutions within the approximate solution surfaces during the Monte Carlo search
(right). The algorithm can rapidly approximate any solution point on the surfaces on the basis of a precomputed library within realistic boundary
constraints. Massive Monte Carlo sampling combined with geometric interpolations is used to minimize the difference between the experimental
data and approximate solutions to extract the desired dynamic parameters.
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approach combining the classical model16 (Bloch−McConnell
equation, eq 1) and the quantum-mechanical model20,29

(Abragam’s operator formalism, eq 4) to calculate the evolution
of the magnetization during the adiabatic spin-lock periods and
different decoupling schemes incorporated into the HARD
experiment (see the Supporting Information).
Quantum-Mechanical Model. The quantum-mechanical

model can be expressed using Abragam’s operator formalism
according to eq 4:

∑σ ω σ* = − · *
′
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−

t
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d
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where σ* is the density matrix in the rotating frame for the two-
spin system, J(ω) is the spectral density function, and Aq

p is any
operator contributing either dipole−dipole or chemical shift
anisotropy interactions. Simulations of adiabatic R1ρ and R2ρ
experiments indicated that proton coupling has only a
moderate effect for small biomolecules (τc = 5 ns) but rather
dramatic effects for larger biomolecules or complexes (τc = 30
ns) (Figure S3). Hence, it is essential to incorporate a
decoupling scheme, which is resistant to off-resonance effects,
for the accurate measurement of adiabatic R1ρ and R2ρ rates.
The original HARD pulse sequence was modified to examine
two modes of proton decoupling (Figure 4), either continuous-
wave (CW) decoupling or π-pulse decoupling. CW decoupling
can potentially introduce artificial relaxation dispersion and
exhibits well-known off-resonance effects (Figures S4−S7).
Computational and experimental evaluations demonstrated that
incorporation of an appropriate π-pulse scheme effectively

eliminates coupling effects, including off-resonance effects, and
yields accurate relaxation dispersion data (Figures S6 and S7).
The combination of this proton-decoupled HARD sequence
with the geometric approximation method to analyze the
relaxation data forms the basis of the acronym for the approach:
geoHARD (geometric approximation on Heteronuclear
Adiabatic Relaxation Dispersion).
In order to experimentally validate geoHARD, we first tested

the approach using Ub14, a phage-display-selected ubiquitin
mutant (∼8 kDa).21 Ubiquitin is well-known for its roles in
proteasome-mediated protein degradation and cellular signal-
ing. Several studies have shown that the internal conformational
dynamics in Ub has dramatic effects on its interaction with
other binding partners.21,30 Ub14 is a selected multiresidue
mutant and was used to illustrate that increased conformational
dynamics is correlated with stronger affinity for USP14
deubiquitinase.21 The conformational dynamics of this mutant
has been well-characterized by conventional CPMG and R1ρ
methods in a previous study,21 and a synchronized motion
(1600−2000 s−1) of the mutant protein has been proposed on
the basis of simultaneous analysis of CPMG data for several
residues;21 hence, it was an excellent candidate to validate the
geoHARD approach. Adiabatic R1ρ, adiabatic R2ρ, and R1
experiments were measured at two magnetic fields (corre-
sponding to 1H frequencies of 600 and 800 MHz) and 25 °C
(see the Supporting Information), and the data were then
analyzed by the geometric approximation method (Figures S8−
S10). The microsecond to millisecond dynamics in Ub14,
probed by the apparent Rex in the adiabatic R2ρ experiments
(Figure 5a), covers the complete range of microsecond to

Figure 2. Data analysis of adiabatic R1ρ, adiabatic R2ρ, and R1 at single (18.8 T), two (14.1 and 18.8 T), or three (14.1, 16.5, and 18.8 T) magnetic
fields using the geometric approximation. At these three magnetic fields, 300 relaxation data sets were simulated using the Bloch−McConnell
equation with random input dynamic parameters. The fit results are plotted against the input values, and those with large standard deviations (SD of
kex > 100.2, SD of Δω > 0.4 ppm, SD of pa > 2.5%) during Monte Carlo sampling are not shown. The coefficient of determination (R2) was calculated
for each dynamic parameter. The numbers in parentheses are the percentages of data that remained after the results with large standard deviations
were filtered out.
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millisecond dynamics detected by the conventional relaxation
dispersion experiments reported previously.21 Moreover, by
mapping the apparent Rex and kex onto the structures, we are
able to categorize the residues exhibiting different ranges of kex
values, spanning from 102 s−1 to 105 s−1 (Figure 5b,c and Table
S1). Instead of fitting all of the relaxation data to get a single kex
value by assuming that all of the motions are synchronized, we
can dissect the heterogeneous distribution of microsecond to
millisecond conformational dynamics in the whole protein. We
are able not only to detect motions (residues at the C-terminal
core opening) with a range of kex values similar or identical to
the proposed synchronized motion but also to find those with
completely different kex ranges (Figure 5c and Table S1). In
fact, by combining our experimental data (Figure 5c) and the
cluster analysis in the previous study,21 we can further support
that the breathing at the C-terminal core opening is important
in the binding of ubiquitin to USP14 deubiquitinase. Therefore,
these data provide a new window into the correlation of
structure and motion with biological function that requires
more exploration.
In a second application, we used geoHARD to detect the

microsecond to millisecond conformational dynamics of two
different ubiquitin-conjugating enzymes (UbcH5b and
Ube2g2) (Figure 6). In the case of UbcH5b at 15 °C (Figure
6a), there is exchange distributed around the molecule that has
not been previously accessible in a routine fashion.22 This can
now be examined. It is reasonable to expect that such
observations will be much more prevalent in biological
molecules than has been previously recognized because of the
experimental limitations that our new method alleviates. It is
interesting that a high rate is observed on the “back side”,

where ubiquitin has been shown to interact with UbcH5b,31

and is in the region where other E2 proteins have been shown
to interact with allosteric effector domains from cognate E3
proteins.23,32,33 In the case of Ube2g2 at 15 °C (Figure 6b), the
presence of dynamics is quite revealing in areas that have been
demonstrated to play roles in the dynamic allostery arising from
interactions between this E2 and its cognate E3, gp78. In
particular, rapid dynamics occurs at the “back side” binding site
of the allosteric effector domain, G2BR, in the N-terminal α-
helix and in the extended loop adjacent to the active site, which
is also key to the allosteric enhancement of binding to the
RING domain of gp78.23,32 These data are consistent with
molecular dynamics studies on apo-Ube2g2 (data to be
published). The above results again demonstrate the potential
impact of this new technique to increase our understanding of
biomolecular systems.

■ DISCUSSION AND CONCLUSIONS

The geometric approximation method is a general strategy to
provide specific solutions of differential equations provided that
certain assumptions are satisfied (see Materials and Methods).
Compared with conventional numerical integration analysis,
this new approach allows us to significantly shorten the
computational time for each sampling step as well as to
massively sample through the complete multidimensional
solution surfaces (see the Supporting Information). The
current pure statistical Monte Carlo sampling of the solution
surfaces may not be the most efficient way to find the solution,
and a better sampling scheme may be incorporated to improve
the efficiency and precision of the sampling in the future.

Figure 3. Effects of random errors on the fit results for adiabatic relaxation dispersion experiments. Up to 5% random errors were introduced into
the simulated data in Figure 2 before data analysis. The fit results are plotted against the input values, and those with large standard deviations (SD of
kex > 100.2, SD of Δω > 0.4 ppm, SD of pa > 2.5%) during Monte Carlo sampling are not shown. The red data points are those with smaller standard
deviations (SD of kex < 100.1). The coefficient of determination (R2) was calculated for each dynamic parameter. The numbers in parentheses are the
percentages of data that remained after the results with large standard deviations were filtered out.
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However, accurate solutions are accessible without concern for
the efficiency of convergence in the numerical integration
approach once the library is computed. For example, numerical
integration to calculate the adiabatic R2ρ relaxation rates
converges much slower than that for adiabatic R1ρ relaxation
rates (see the Supporting Information); however, the computa-
tional analysis times using the geometric approximation with
precomputed libraries are the same for R1ρ and R2ρ. Extraction
of accurate solutions for each experimental data set via the
geometric approximation method is rapid for any molecular
system and requires minimal computational power. Here we
successfully applied this new approach to determine adiabatic
relaxation rates, described by the time-dependent Bloch−
McConnell equation, and we are able to extract rich
information from the sophisticated experiments to improve
our understanding of protein dynamics. This suggests that the
present computational technique may be applied to benefit
other disciplines in the future as well as to allow the design and
analysis of new relaxation dispersion experiments to reveal
important functional motions in biological systems.
We have utilized the geoHARD method to demonstrate the

facile ability to detect and quantify conformational dynamics
across a broad range of time scales while avoiding an
assumption of synchronized motion. Of particular interest is
the ability to characterize a heterogeneous distribution of
conformational dynamics across a wide range of time scales
(102−105 s−1) that may imply important biological processes,

including binding, allostery, and enzymatic turnover. Compared
with conventional methods, geoHARD has many advantages.
CPMG methods (102 ∼ 103 s−1) are rendered insensitive and
error-prone by the constant time period and the large
transverse relaxation in the laboratory frame, and the off-
resonance effect due to imperfect π pulses can generate
additional complications. In the case of R1ρ experiments (10

3−
104 s−1), accurate calibration of the offsets and power levels of
CW pulses is extremely important because of the high
sensitivity of relaxation dispersion to these two factors.
Conversely, HARD experiments are generally more sensitive
and contain smaller experimental errors in real applications, and
the relaxation dispersion is, in general, offset-independent. The
HARD experiments with the optimized proton-decoupling
scheme are designed for protein samples with high deuteration
levels and without 13C labeling. Although the π-pulse
decoupling can efficiently remove the cross-correlation, the
spin-flip mechanism resulting from incomplete deuteration in
large molecules can potentially affect its decoupling efficiency.
For additional 13C labeling, although theoretically the same π-
pulse decoupling scheme can be used to remove the effects of
the carbon coupling, this has not yet been examined and may
suffer from bandwidth considerations. Thus, a high level of
deuteration without 13C labeling is recommended when
geoHARD is used. With the ability to accurately and rapidly
analyze the data using the geometric approximation, the
broader time scale probed by geoHARD will be powerful in

Figure 4. (a) Pulse sequences for the measurement of 15N adiabatic relaxation dispersion experiments. The sequences were modified from the
original ones proposed by Mangia et al.15 Adiabatic hyperbolic secant pulses were used for the 15N spin-lock periods. (b, d) R1ρ experiments and (c,
e) R2ρ experiments are included with a purge element and different proton-decoupling schemes. During 15N spin-lock periods, the offset of the
proton decoupling was placed in the center of the amide proton region. The phases were ϕ1 = x, −x, x, −x; ϕ2 = x, x, y, y; and ϕrec = x, −x, x, −x.
The gradient magnitudes for G1−G5 were 16.5, 44, 19.8, 13.2, and 8.9 G/cm, respectively, with a fixed length of 1 ms.
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examining allosteric effects and correlating with long molecular
dynamics trajectories. The distribution of heterogeneous
conformational dynamics in biomolecules, as revealed by this
powerful tool, can help not only to increase our understanding
of the tunable functions of proteins but also to accelerate the
design of better modulators.
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